# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Bis(N,N',N''-triisopropylguanidinium)fumarate-fumaric acid (1/1)

### Faroug F. Said,<sup>a</sup>\* Basem F. Ali,<sup>a</sup>\* Darrin Richeson<sup>b</sup> and Ilia Korobkov<sup>b</sup>

<sup>a</sup>Department of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and <sup>b</sup>Department of Chemistry and Biochemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Correspondence e-mail: fjuqqa@aabu.edu.jo, bfali@aabu.edu.jo

Received 24 April 2012; accepted 20 May 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.130; data-to-parameter ratio = 13.2.

The asymmetric unit of the title compound,  $C_{10}H_{24}N_3^+$ .  $0.5C_4H_2O_4^{2-}$ .  $0.5C_4H_4O_4$ , comprises a triisopropylguanidinium cation, half of a fumarate dianion and half of a fumaric acid molecule; both the fumarate dianion and the fumaric acid molecule are located on inversion centres. In the crystal, intermolecular O-H···O hydrogen bonds between the carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions lead to the formation of a hydrogen-bonded supramolecular twisted chain along the b axis. The triisopropylguanidinium cations interact with the fumarate-fumaric acid chains via extensive  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds, leading to a ladder arrangement, with the cation being the rungs that bridge three curled chains of fumarate-fumaric acid. The crystal packing is stabilized by  $N-H \cdots O$  and  $C-H \cdots O$  (cation  $\cdots$  fumarate/ fumaric) and  $O-H\cdots O$  (fumarate...fumaric) hydrogen bonds, consolidating a three-dimensional network.

#### **Related literature**

For background information and N, N', N''-trisubstituted guanidinium salts, see: Said et al. (2011). For related structures, see: Said et al. (2005); Hemamalini & Fun (2010); Büyükgüngör *et al.* (2004). For the preparation of the triisopropyl guanidine compound, see: Ong et al. (2003).



# **Experimental**

#### Crystal data

 $C_{10}H_{24}N_3^+ \cdot 0.5C_4H_2O_4^{2-} \cdot 0.5C_4H_4O_4$  $M_r = 301.39$ Monoclinic,  $P2_1/n$ a = 9.714 (3) Å b = 11.633 (3) Å c = 16.226 (4) Å  $\beta = 102.291 (4)^{\circ}$ 

#### Data collection

| Bruker APEXII CCD area-detector        |
|----------------------------------------|
| diffractometer                         |
| Absorption correction: multi-scan      |
| (SADABS; Bruker, 2003)                 |
| $T_{\min} = 0.960, \ T_{\max} = 0.964$ |
|                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.044$ | 191 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.130$               | H-atom parameters constrained                              |
| S = 1.04                        | $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2514 reflections                | $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ |

V = 1791.6 (8) Å<sup>3</sup>

Mo  $K\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ 

 $0.50 \times 0.45 \times 0.45$  mm

11184 measured reflections

2514 independent reflections 2121 reflections with  $I > 2\sigma(I)$ 

Z = 4

T = 200 K

 $R_{\rm int} = 0.027$ 

 $\theta_{\rm max} = 23.3^{\circ}$ 

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| N1-H1A···O3                 | 0.88 | 2.05                    | 2.866 (2)    | 154                       |
| $N2-H2A\cdots O4^{i}$       | 0.88 | 2.22                    | 2.976 (2)    | 144                       |
| N3-H3A···O1 <sup>ii</sup>   | 0.88 | 2.04                    | 2.866 (2)    | 155                       |
| $O2-H2\cdots O4^{iii}$      | 0.84 | 1.66                    | 2.484(2)     | 168                       |
| C8-H8A···O3                 | 1.00 | 2.49                    | 3.356 (2)    | 144                       |
| $C2-H2B\cdots O4^{i}$       | 1.00 | 2.46                    | 3.372 (2)    | 150                       |
| $C5-H5A\cdots O1^{ii}$      | 1.00 | 2.48                    | 3.270 (2)    | 135                       |

Symmetry codes: (i)  $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and Al al-Bayt University (Jordan) for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2540).

#### References

- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA. Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta
- Cryst. C60, 0470-0472.
- Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093-o2094.
- Ong, T. G., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 8100-8101
- Said, F. F., Ali, B. F. & Richeson, D. (2011). Acta Cryst. E67, 03467.
- Said, F. F., Ong, T. G., Yap, G. P. A. & Richeson, D. (2005). Cryst. Growth Des. 5. 1881-1888
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.



# supplementary materials

Acta Cryst. (2012). E68, o1906 [doi:10.1107/S1600536812023094]

# Bis(N,N',N''-triisopropylguanidinium) fumarate-fumaric acid (1/1)

# Farouq F. Said, Basem F. Ali, Darrin Richeson and Ilia Korobkov

## Comment

In connection with ongoing studies of the structural aspects of N,N',N"-trisubstituted guanidinium salts (Said et al., 2011), we herein report the crystal structure of the title compound (Fig. 1). The bond distances and bond angles in the title compound agree very well with the corresponding bond distances and bond angles reported in a similar compound earlier (Said et al., 2005). The central guanidinium fragment of the cation is planar (sum of NCN angles is 360°). Both the fumarate and the fumaric acid units are planar and centrosymmetric with the inversion center at the midpoint of the C=C double bond. The C13—O3/O4 bonds in the fumarate dianion [1.222 (2) and 1.280 (2) Å] indicate a delocalized  $\pi$ bonding arrangement as a consequence of deprotonation of the carboxylic acid group. On the other hand, the fumaric acid moiety displays a shorter C11-O1 bond [1.219 (3) Å] and a longer C11-O2 bond [1.302 (3) Å] as expected for a protonated carboxyl group. The carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions are hydrogen bonded through O2-H2···O4 leading to the formation of a one-dimensional hydrogenbonded supramolecular twisting chain along the b -axis (Fig. 2, Table 1). This type of carboxyl-carboxylate interaction has been reported in the several crystal structures containing fumarate-fumaric acid species with different cations (Hemamalini & Fun, 2010, Büyükgüngör et al., 2004) indicating the stability of such a supramolecular motif. The triisopropyl guanidinium cations are bridging three fumarate-fumaric curled chains via extensive N—H…O hydrogen bonds (Table 1), forming triply bridged twisted chains, leading to a ladder type arrangement with guanidinium cation forming rungs (Fig. 2). The extensive hydrogen bonding interactions between the fumarate-fumaric acid chains and the ladder of guanidinium rungs along the *b*-axis consolidate the three-dimensional network.

## Experimental

N,N',N''-Triisopropylguanidine was prepared according to literature methods (Ong *et al.*, 2003). In a round bottom flask, a mixture fumaric acid (0.395 mmol) and N,N',N''-triisopropylguanidine (0.395 mmol was dissolved in THF (10 ml). The reaction mixture was stirred, and a colorless precipitate formed over the next few minutes. The solid was removed by filtration and the product was crystallized from a mixture of THF:methanol (1:2) to give colorless crystals of the title compound (92% yield).

## Refinement

Hydrogen atoms were included in calculated positions and refined as riding on their parent atoms with N—H = 0.88 Å, O —H = 0.84 Å and C—H = 0.95–1.0 Å and  $U_{iso}$ (H) = 1.2 $U_{eq}$ (non-methyl C/N) or 1.5 $U_{eq}$ (methyl C/O). Due to the quality of crystal we did not observe significant diffraction data past 0.95 Å resolution, therefore the data set was trimmed to that value to reduce data to noise ratio and improve the quality of the final refinement.

## **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).



### Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry operations: (i) 2 -x, -y, 1 -z; (ii) -x, 1 -y, 1 -z.



# Figure 2

A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms nonparticipating in hydrogen-bonding were omitted for clarity.

# Bis(N,N',N''-triisopropylguanidinium) fumarate-fumaric acid (1/1)

| Crystal data                                                     |                                                       |
|------------------------------------------------------------------|-------------------------------------------------------|
| $C_{10}H_{24}N_3^{+} \cdot 0.5C_4H_2O_4^{2-} \cdot 0.5C_4H_4O_4$ | $D_{\rm x} = 1.117 { m Mg} { m m}^{-3}$               |
| $M_r = 301.39$                                                   | $D_{\rm m} = {\rm n/a~Mg~m^{-3}}$                     |
| Monoclinic, $P2_1/n$                                             | $D_{\rm m}$ measured by not measured                  |
| Hall symbol: -P 2yn                                              | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 9.714(3) Å                                                   | Cell parameters from 309 reflections                  |
| b = 11.633 (3) Å                                                 | $\theta = 2.2 - 23.3^{\circ}$                         |
| c = 16.226 (4) Å                                                 | $\mu=0.08~\mathrm{mm}^{-1}$                           |
| $\beta = 102.291 \ (4)^{\circ}$                                  | T = 200  K                                            |
| V = 1791.6 (8) Å <sup>3</sup>                                    | Block, colourless                                     |
| Z = 4                                                            | $0.50 \times 0.45 \times 0.45$ mm                     |
| F(000) = 656                                                     |                                                       |

Data collection

| Bruker APEXII CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>phi and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2003)<br>$T_{\min} = 0.960, T_{\max} = 0.964$<br><i>Refinement</i>                      | 11184 measured reflections<br>2514 independent reflections<br>2121 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.027$<br>$\theta_{max} = 23.3^{\circ}, \ \theta_{min} = 2.2^{\circ}$<br>$h = -10 \rightarrow 10$<br>$k = -12 \rightarrow 12$<br>$l = -18 \rightarrow 18$                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.044$<br>$wR(F^2) = 0.130$<br>S = 1.04<br>2514 reflections<br>191 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods<br>Secondary atom site location: difference Fourier<br>map | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0727P)^2 + 0.7515P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.22$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.18$ e Å <sup>-3</sup><br>Extinction correction: <i>SHELXL97</i> (Sheldrick,<br>2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}<br>Extinction coefficient: 0.013 (2) |

### Special details

**Experimental**. Data collection is performed with three batch runs at phi =  $0.00^{\circ}$  (650 frames), at phi =  $120.00^{\circ}$  (650 frames), and at phi =  $240.00^{\circ}$  (650 frames). Frame width =  $0.30^{\circ}$  in omega. Data is merged, corrected for decay (if any), and treated with multi-scan absorption corrections (if required). All symmetry-equivalent reflections are merged for centrosymmetric data. Friedel pairs are not merged for noncentrosymmetric data.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| x            | У                                                                                                                                                     | Ζ                                                                                                                                                                                                                | $U_{ m iso}$ */ $U_{ m eq}$                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.3813 (2)   | 0.7589 (2)                                                                                                                                            | 0.65518 (12)                                                                                                                                                                                                     | 0.0606 (6)                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.3496       | 0.7206                                                                                                                                                | 0.6082                                                                                                                                                                                                           | 0.073*                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.55340 (17) | 0.87868 (16)                                                                                                                                          | 0.72883 (10)                                                                                                                                                                                                     | 0.0407 (5)                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.5134       | 0.8698                                                                                                                                                | 0.7722                                                                                                                                                                                                           | 0.049*                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.55035 (18) | 0.83370 (15)                                                                                                                                          | 0.58961 (10)                                                                                                                                                                                                     | 0.0400 (5)                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.6221       | 0.8809                                                                                                                                                | 0.5930                                                                                                                                                                                                           | 0.048*                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.4961 (2)   | 0.82257 (18)                                                                                                                                          | 0.65809 (12)                                                                                                                                                                                                     | 0.0372 (5)                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.3022 (3)   | 0.7462 (3)                                                                                                                                            | 0.72241 (15)                                                                                                                                                                                                     | 0.0618 (8)                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.3531       | 0.7879                                                                                                                                                | 0.7738                                                                                                                                                                                                           | 0.074*                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.1559 (4)   | 0.7963 (3)                                                                                                                                            | 0.6947 (2)                                                                                                                                                                                                       | 0.0908 (10)                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1630       | 0.8780                                                                                                                                                | 0.6813                                                                                                                                                                                                           | 0.136*                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.1047       | 0.7880                                                                                                                                                | 0.7402                                                                                                                                                                                                           | 0.136*                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | x<br>0.3813 (2)<br>0.3496<br>0.55340 (17)<br>0.5134<br>0.55035 (18)<br>0.6221<br>0.4961 (2)<br>0.3022 (3)<br>0.3531<br>0.1559 (4)<br>0.1630<br>0.1047 | x $y$ 0.3813 (2)0.7589 (2)0.34960.72060.55340 (17)0.87868 (16)0.51340.86980.55035 (18)0.83370 (15)0.62210.88090.4961 (2)0.82257 (18)0.3022 (3)0.7462 (3)0.35310.78790.1559 (4)0.7963 (3)0.16300.87800.10470.7880 | xyz $0.3813 (2)$ $0.7589 (2)$ $0.65518 (12)$ $0.3496$ $0.7206$ $0.6082$ $0.55340 (17)$ $0.87868 (16)$ $0.72883 (10)$ $0.5134$ $0.8698$ $0.7722$ $0.55035 (18)$ $0.83370 (15)$ $0.58961 (10)$ $0.6221$ $0.8809$ $0.5930$ $0.4961 (2)$ $0.82257 (18)$ $0.65809 (12)$ $0.3022 (3)$ $0.7462 (3)$ $0.72241 (15)$ $0.3531$ $0.7879$ $0.7738$ $0.1559 (4)$ $0.7963 (3)$ $0.6947 (2)$ $0.1630$ $0.8780$ $0.7402$ |

| H3D  | 0.1053       | 0.7554        | 0.6445       | 0.136*      |
|------|--------------|---------------|--------------|-------------|
| C4   | 0.2946 (4)   | 0.6209 (3)    | 0.7427 (2)   | 0.0980 (12) |
| H4A  | 0.3902       | 0.5903        | 0.7614       | 0.147*      |
| H4B  | 0.2463       | 0.5794        | 0.6922       | 0.147*      |
| H4C  | 0.2424       | 0.6111        | 0.7876       | 0.147*      |
| C5   | 0.6772 (2)   | 0.95385 (17)  | 0.74056 (13) | 0.0377 (5)  |
| H5A  | 0.6841       | 0.9853        | 0.6842       | 0.045*      |
| C6   | 0.6565 (3)   | 1.0533 (2)    | 0.79649 (16) | 0.0575 (7)  |
| H6A  | 0.5696       | 1.0942        | 0.7712       | 0.086*      |
| H6B  | 0.7367       | 1.1061        | 0.8023       | 0.086*      |
| H6C  | 0.6500       | 1.0243        | 0.8522       | 0.086*      |
| C7   | 0.8100 (3)   | 0.8884 (2)    | 0.77559 (19) | 0.0652 (7)  |
| H7A  | 0.8199       | 0.8251        | 0.7374       | 0.098*      |
| H7B  | 0.8056       | 0.8574        | 0.8311       | 0.098*      |
| H7C  | 0.8911       | 0.9401        | 0.7811       | 0.098*      |
| C8   | 0.5007 (2)   | 0.77405 (19)  | 0.50895 (13) | 0.0438 (6)  |
| H8A  | 0.3956       | 0.7697        | 0.4980       | 0.053*      |
| С9   | 0.5406 (3)   | 0.8431 (2)    | 0.43942 (14) | 0.0555 (6)  |
| H9A  | 0.5003       | 0.9204        | 0.4387       | 0.083*      |
| H9B  | 0.5041       | 0.8054        | 0.3852       | 0.083*      |
| H9C  | 0.6434       | 0.8486        | 0.4490       | 0.083*      |
| C10  | 0.5571 (4)   | 0.6538 (2)    | 0.51258 (18) | 0.0841 (10) |
| H10A | 0.5288       | 0.6120        | 0.5587       | 0.126*      |
| H10B | 0.6602       | 0.6561        | 0.5223       | 0.126*      |
| H10C | 0.5193       | 0.6147        | 0.4591       | 0.126*      |
| C11  | 0.8673 (2)   | 0.02478 (18)  | 0.57016 (13) | 0.0372 (5)  |
| C12  | 0.9785 (2)   | 0.04210 (18)  | 0.52111 (13) | 0.0366 (5)  |
| H12A | 1.0196       | 0.1161        | 0.5202       | 0.044*      |
| C13  | 0.0836 (2)   | 0.63781 (18)  | 0.46512 (12) | 0.0373 (5)  |
| C14  | -0.0139 (2)  | 0.54111 (18)  | 0.47181 (12) | 0.0388 (5)  |
| H14A | -0.1018      | 0.5388        | 0.4327       | 0.047*      |
| 01   | 0.81517 (17) | -0.06979 (13) | 0.57428 (11) | 0.0534 (5)  |
| 02   | 0.82763 (15) | 0.11397 (12)  | 0.60762 (10) | 0.0468 (4)  |
| H2   | 0.8741       | 0.1718        | 0.5986       | 0.070*      |
| O3   | 0.19305 (19) | 0.64871 (16)  | 0.51791 (11) | 0.0672 (6)  |
| O4   | 0.04379 (15) | 0.70345 (12)  | 0.40121 (9)  | 0.0425 (4)  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|-------------|--------------|
| N1 | 0.0536 (12) | 0.0929 (16) | 0.0369 (10) | -0.0418 (11) | 0.0131 (9)  | -0.0110 (10) |
| N2 | 0.0404 (10) | 0.0532 (11) | 0.0306 (9)  | -0.0154 (8)  | 0.0123 (7)  | -0.0032 (8)  |
| N3 | 0.0414 (10) | 0.0462 (10) | 0.0337 (9)  | -0.0158 (8)  | 0.0111 (7)  | -0.0042 (8)  |
| C1 | 0.0352 (11) | 0.0435 (12) | 0.0321 (11) | -0.0100 (9)  | 0.0058 (9)  | 0.0015 (9)   |
| C2 | 0.0527 (14) | 0.094 (2)   | 0.0402 (13) | -0.0384 (14) | 0.0138 (11) | -0.0032 (13) |
| C3 | 0.093 (2)   | 0.087 (2)   | 0.106 (3)   | 0.0130 (18)  | 0.051 (2)   | 0.0107 (19)  |
| C4 | 0.091 (2)   | 0.116 (3)   | 0.098 (2)   | 0.018 (2)    | 0.0448 (19) | 0.059 (2)    |
| C5 | 0.0373 (11) | 0.0419 (12) | 0.0344 (11) | -0.0107 (9)  | 0.0085 (9)  | -0.0029 (9)  |
| C6 | 0.0753 (17) | 0.0488 (15) | 0.0524 (14) | -0.0164 (12) | 0.0227 (13) | -0.0100 (11) |
| C7 | 0.0413 (13) | 0.0687 (17) | 0.0832 (19) | -0.0008 (12) | 0.0076 (13) | 0.0107 (14)  |

# supplementary materials

| C8  | 0.0505 (13) | 0.0483 (13) | 0.0303 (11) | -0.0115 (10) | 0.0035 (9)  | -0.0018 (9)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C9  | 0.0729 (16) | 0.0591 (15) | 0.0346 (12) | -0.0105 (12) | 0.0115 (11) | -0.0006 (11) |
| C10 | 0.143 (3)   | 0.0518 (17) | 0.0493 (16) | 0.0038 (17)  | 0.0019 (17) | -0.0053 (12) |
| C11 | 0.0385 (11) | 0.0384 (12) | 0.0380 (11) | -0.0092 (9)  | 0.0154 (9)  | -0.0038 (9)  |
| C12 | 0.0381 (11) | 0.0344 (11) | 0.0404 (11) | -0.0115 (8)  | 0.0152 (9)  | -0.0012 (8)  |
| C13 | 0.0428 (12) | 0.0405 (12) | 0.0291 (11) | -0.0111 (9)  | 0.0089 (9)  | -0.0064 (9)  |
| C14 | 0.0378 (11) | 0.0453 (12) | 0.0313 (10) | -0.0120 (9)  | 0.0028 (9)  | -0.0033 (8)  |
| 01  | 0.0598 (10) | 0.0442 (9)  | 0.0669 (11) | -0.0215 (8)  | 0.0376 (8)  | -0.0112 (8)  |
| O2  | 0.0534 (9)  | 0.0382 (8)  | 0.0578 (9)  | -0.0073 (7)  | 0.0316 (8)  | -0.0029 (7)  |
| 03  | 0.0652 (11) | 0.0750 (12) | 0.0514 (10) | -0.0411 (9)  | -0.0100 (9) | 0.0121 (9)   |
| O4  | 0.0539 (9)  | 0.0377 (8)  | 0.0366 (8)  | -0.0069 (7)  | 0.0111 (7)  | 0.0000 (6)   |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| N1—C1     | 1.331 (3)   | C7—H7A                | 0.9800      |
|-----------|-------------|-----------------------|-------------|
| N1—C2     | 1.469 (3)   | C7—H7B                | 0.9800      |
| N1—H1A    | 0.8800      | С7—Н7С                | 0.9800      |
| N2—C1     | 1.335 (3)   | C8—C10                | 1.499 (4)   |
| N2—C5     | 1.466 (3)   | C8—C9                 | 1.502 (3)   |
| N2—H2A    | 0.8800      | C8—H8A                | 1.0000      |
| N3—C1     | 1.334 (3)   | С9—Н9А                | 0.9800      |
| N3—C8     | 1.469 (3)   | С9—Н9В                | 0.9800      |
| N3—H3A    | 0.8800      | С9—Н9С                | 0.9800      |
| C2—C4     | 1.500 (5)   | C10—H10A              | 0.9800      |
| С2—С3     | 1.513 (4)   | C10—H10B              | 0.9800      |
| C2—H2B    | 1.0000      | C10—H10C              | 0.9800      |
| С3—Н3В    | 0.9800      | C11—O1                | 1.219 (2)   |
| С3—Н3С    | 0.9800      | C11—O2                | 1.302 (3)   |
| C3—H3D    | 0.9800      | C11—C12               | 1.485 (3)   |
| C4—H4A    | 0.9800      | C12—C12 <sup>i</sup>  | 1.314 (4)   |
| C4—H4B    | 0.9800      | C12—H12A              | 0.9500      |
| C4—H4C    | 0.9800      | C13—O3                | 1.222 (3)   |
| С5—С7     | 1.501 (3)   | C13—O4                | 1.279 (3)   |
| С5—С6     | 1.510(3)    | C13—C14               | 1.489 (3)   |
| С5—Н5А    | 1.0000      | C14—C14 <sup>ii</sup> | 1.311 (4)   |
| С6—Н6А    | 0.9800      | C14—H14A              | 0.9500      |
| С6—Н6В    | 0.9800      | O2—H2                 | 0.8400      |
| С6—Н6С    | 0.9800      |                       |             |
| C1—N1—C2  | 126.59 (19) | Н6А—С6—Н6С            | 109.5       |
| C1—N1—H1A | 116.7       | H6B—C6—H6C            | 109.5       |
| C2—N1—H1A | 116.7       | С5—С7—Н7А             | 109.5       |
| C1—N2—C5  | 125.70 (16) | С5—С7—Н7В             | 109.5       |
| C1—N2—H2A | 117.1       | H7A—C7—H7B            | 109.5       |
| C5—N2—H2A | 117.1       | С5—С7—Н7С             | 109.5       |
| C1—N3—C8  | 125.69 (17) | H7A—C7—H7C            | 109.5       |
| C1—N3—H3A | 117.2       | H7B—C7—H7C            | 109.5       |
| C8—N3—H3A | 117.2       | N3—C8—C10             | 110.97 (19) |
| N1-C1-N2  | 119.70 (18) | N3—C8—C9              | 109.17 (18) |
| N1-C1-N3  | 120.07 (18) | C10—C8—C9             | 112.2 (2)   |

| N2—C1—N3    | 120.18 (17) | N3—C8—H8A                    | 108.1       |
|-------------|-------------|------------------------------|-------------|
| N1—C2—C4    | 108.6 (2)   | C10—C8—H8A                   | 108.1       |
| N1—C2—C3    | 110.3 (2)   | C9—C8—H8A                    | 108.1       |
| C4—C2—C3    | 110.6 (2)   | С8—С9—Н9А                    | 109.5       |
| N1—C2—H2B   | 109.1       | C8—C9—H9B                    | 109.5       |
| C4—C2—H2B   | 109.1       | H9A—C9—H9B                   | 109.5       |
| C3—C2—H2B   | 109.1       | С8—С9—Н9С                    | 109.5       |
| С2—С3—Н3В   | 109.5       | Н9А—С9—Н9С                   | 109.5       |
| С2—С3—Н3С   | 109.5       | H9B—C9—H9C                   | 109.5       |
| НЗВ—СЗ—НЗС  | 109.5       | C8—C10—H10A                  | 109.5       |
| C2—C3—H3D   | 109.5       | C8-C10-H10B                  | 109.5       |
| H3B—C3—H3D  | 109.5       | H10A—C10—H10B                | 109.5       |
| H3C—C3—H3D  | 109.5       | C8—C10—H10C                  | 109.5       |
| C2—C4—H4A   | 109.5       | H10A—C10—H10C                | 109.5       |
| C2—C4—H4B   | 109.5       | H10B-C10-H10C                | 109.5       |
| H4A—C4—H4B  | 109.5       | O1—C11—O2                    | 121.74 (18) |
| C2—C4—H4C   | 109.5       | O1—C11—C12                   | 120.65 (18) |
| H4A—C4—H4C  | 109.5       | O2—C11—C12                   | 117.61 (17) |
| H4B—C4—H4C  | 109.5       | C12 <sup>i</sup> —C12—C11    | 121.8 (2)   |
| N2—C5—C7    | 111.20 (19) | C12 <sup>i</sup> —C12—H12A   | 119.1       |
| N2—C5—C6    | 108.94 (17) | C11—C12—H12A                 | 119.1       |
| C7—C5—C6    | 112.0 (2)   | O3—C13—O4                    | 125.02 (19) |
| N2—C5—H5A   | 108.2       | O3—C13—C14                   | 119.94 (19) |
| С7—С5—Н5А   | 108.2       | O4—C13—C14                   | 115.03 (18) |
| С6—С5—Н5А   | 108.2       | C14 <sup>ii</sup> —C14—C13   | 124.2 (2)   |
| С5—С6—Н6А   | 109.5       | C14 <sup>ii</sup> —C14—H14A  | 117.9       |
| С5—С6—Н6В   | 109.5       | C13—C14—H14A                 | 117.9       |
| H6A—C6—H6B  | 109.5       | C11—O2—H2                    | 109.5       |
| С5—С6—Н6С   | 109.5       |                              |             |
|             |             |                              |             |
| C2—N1—C1—N2 | 3.1 (4)     | C1—N2—C5—C7                  | -92.6 (3)   |
| C2—N1—C1—N3 | -174.4 (2)  | C1—N2—C5—C6                  | 143.5 (2)   |
| C5—N2—C1—N1 | -178.4 (2)  | C1—N3—C8—C10                 | -80.4 (3)   |
| C5—N2—C1—N3 | -1.0 (3)    | C1—N3—C8—C9                  | 155.4 (2)   |
| C8—N3—C1—N1 | -4.8 (3)    | O1-C11-C12-C12 <sup>i</sup>  | 1.9 (4)     |
| C8—N3—C1—N2 | 177.8 (2)   | O2-C11-C12-C12 <sup>i</sup>  | -177.6 (3)  |
| C1—N1—C2—C4 | -123.8 (3)  | O3—C13—C14—C14 <sup>ii</sup> | -5.4 (4)    |
| C1—N1—C2—C3 | 114.8 (3)   | O4—C13—C14—C14 <sup>ii</sup> | 173.6 (3)   |

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                     | D—H  | H···A | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|-----------------------------|------|-------|--------------|-------------------------|
| N1—H1A…O3                   | 0.88 | 2.05  | 2.866 (2)    | 154                     |
| N2—H2A····O4 <sup>iii</sup> | 0.88 | 2.22  | 2.976 (2)    | 144                     |
| N3—H3A····O1 <sup>iv</sup>  | 0.88 | 2.04  | 2.866 (2)    | 155                     |
| O2—H2···O4 <sup>v</sup>     | 0.84 | 1.66  | 2.484 (2)    | 168                     |
| C8—H8A····O3                | 1.00 | 2.49  | 3.356 (2)    | 144                     |

|                                      |      |      | supplementary materials |     |
|--------------------------------------|------|------|-------------------------|-----|
| C2—H2 <i>B</i> ····O4 <sup>iii</sup> | 1.00 | 2.46 | 3.372 (2)               | 150 |
| C5—H5A…O1 <sup>iv</sup>              | 1.00 | 2.48 | 3.270 (2)               | 135 |

Symmetry codes: (iii) *x*+1/2, -*y*+3/2, *z*+1/2; (iv) *x*, *y*+1, *z*; (v) -*x*+1, -*y*+1, -*z*+1.